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ABSTARCT: 
The  decision making  strategy adopted by  the fault diagnosis system should  consider the benefit  of  
acquiring  information versus  introducing  measurement error  into  system  knowledge.  Further, it is 
expected to revise its beliefs by judging the truth of informationally valuable hypotheses. It should avoid  
rejecting  important  hypotheses  simply on  the basis of  the probability of  truth and  error and  should 
be indifferent  to  the  truth  or  error  of  a  hypothesis  it  regards  as informationally unimportant. In 
this paper, decision making for fault diagnosis for the DAMADICS problem has been considered under 
the framework of cognitive decision theory.  
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I.  INTRODUCTION 

There are a large number of process variables available for measurement in the sugar plant  taken up for this 
research. Hence, for efficient fault diagnosis, the selection of more informative sensors and continuous 
monitoring of their health condition is an important problem that needs epistemological consideration. Sensor 
uncertainty depends on what is observed rather than the sensor itself. Also, inability of the sensor to measure all 
relevant attributes or ambiguous observations can all contribute to uncertainty. The advantage of multiple 
sensors is that the observations of each one may be combined into an improved estimate of the state compared to 
one derived from a single sensor. Hence, each sensor may play the role of a potential contributor to a composite 
decision making process. In this paper, decision making for fault diagnosis for the DAMADICS problem[1] has 
been considered under the framework of cognitive decision theory[2-3].  
Epistemological considerations have been made in this paper which may further help in improvement of the 
results by making the decision making system self learning and intelligent 
 

II.  PROPOSED METHODLOGY 

 
On the basis of decisions obtained at primary and secondary level stage in relation to normal, abrupt and 
incipient fault conditions by the computational decision making system, a priori probabilities are assigned to the 
computational decision making system, as shown in Figure 1. The system adopts a particular probability 
distribution as credence function. Here, the epistemological decisions under evaluation are decisions of adopting 
a particular credence function. 
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Figure 1: Proposed Framework for Epistemological Evaluations 

 
Since such decisions are prescriptions for how to revise system’s beliefs in the light of new evidence, they are 
also termed as updating policies. Updation of conditionalization of the computational decision making system 
leads to the possible posterior probability distributions. 
 
In the pursuit of acquiring error-free knowledge, epistemic utility of taking a decision in a given scenario is 
evaluated and analyzed under the framework of Cognitive Decision theory. Expected Utility Function helps in 
evaluating the degree of fit between the truth and the belief states of the computational decision making system. 
Hence, in any given epistemic predicament, that alternative policy (i.e., epistemologically rational action) is 
selected which maximizes the value of this function. 
 

III.  IMPLEMENTATION  OF PROPOSED METHODLOGY 

 
In the primary decision making stage the granulation of measured parameters was done on the basis of max-min 
ranges. Instead of this, the criteria of granulation are now chosen so that all the granules have a spread of ± 3 
times of standard deviation around the mean value of the dataset for the selected class. Thus, an alternative 
preliminary Decision Making policy is now available. This selection of policy is based on the study of the 
distribution of the data of two states of the system, namely normal and fault conditions. 
 
For illustration, distribution of CV, P1, X, F corresponding to fault F8 i.e., Twisted servo-motor's piston rod 
fault is shown in Figure 2. It can be observed that all these parameters generally follow the Gaussian Normal 
Distribution; hence the above selection of alternative policy appears to be justified. 
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Figure 2: Distribution of Measured Parameters Values 
 
 For the Data set considered for Class 0 (Normal Condition) and Class 1 (Fault Condition) following results are 
obtained on the basis of alternative policy as indicated in Table 1-2. 

 
 
 

Table 1: Values (p.u.) of Measured Parameters (Class 0 – Normal Condition) 
 

 
Mean (m) 

Standard deviation 
(sd) 

m+3 sd m-3 sd 

CV 0.263817 0.875232 0.650595 0.215223 
P1 0.076837 0.030722353 0.005022 0.001713791 
P2 0.494328 0.967399058 0.665662 0.220364374 
T 0.033306 0.783064942 0.635528 0.210081626 

 
Table 2: Values (p.u.) of Measured Parameters (Class 1 – Fault Condition) 

 

 
Mean (m) 

Standard deviation 
(sd) 

m+3 sd m-3 sd 

CV 0.555921 0.8896273 0.649507 0.2453558 
P1 0.089686 0.029035598 0.004722 0.061200152 
P2 0.82498 0.976734093 0.663674 0.428956257 
T 0.286861 0.802520507 0.63534 0.061755343 

 
Accordingly, the ranges of actual values of measured parameters have been shown in Table 3. 
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Table 3: Ranges of the Measured Parameters within the classes 

 
Measured 
Parameter 

Class 0 Class 1 

CV 3.33 49.43 28.68 82.49 
P1 783.06 967.39 802.52 976.73 
P2 635.52 665.66 635.33 663.67 
T 31.51 33.05 9.26 64.34 

 
The ranges of the values presented in Table have been granulated, depending on the classes (class 0 – Normal 
Condition, class 1 – Fault Condition), as illustrated in Table 4. 

 
Table 4: Granulated ranges of the Measured Parameters 

 
Measured 
Parameter 

Range Granules Class 0 Class 1 

CV 
3.33 28.68 A11 Class 0  
28.69 49.43 A12 Class 0 Class1 
49.44 82.498 A13  Class1 

P1 
783.06 802.51 A21 Class 0  
802.52 967.39 A22 Class 0 Class1 
967.40 976.73 A23  Class1 

P2 
635.33 635.51 A31  Class 1 
635.52 663.67 A32 Class 0 Class 1 
663.68 665.66 A33 Class 0  

T 
9.2 31.4 A41  Class1 
31.5 33.05 A42 Class 0 Class1 
33.06 64.34 A43 Class 0  

 
The following Perception-Based Rules are now obtained:- 

R1: IF CV is A 11 or CV is A12 and P1 is A21  or P1 is A22  and P2 is A32 or P2 is A33  and T is A42 or T is A43 

THEN Class 0. 

R2: IF CV is A 12 or CV is A13 and P1 is A22 or P1 is A23  and P2 is A31 or P2 is A32 and  T is A41 or T is A42 
THEN Class 1. 

The classification system includes the above mentioned rules and membership functions are expressed 
accordingly. Finally, the results of classification based on alternative policy are obtained from these rules and 
have been depicted as in Table 5. 

Table 5: Results for Selected Datasets 
 

Pattern 
No. CV P1 P2 T 

Actual State of 
operation  

Result of 
Classification  

1 0.28892 0.8484 0.64977 0.2156 Normal Normal 

2 0.28092 0.83317 0.6575 0.21528 Normal Normal 

3 0.27379 0.83474 0.64597 0.21377 Normal Normal 

4 0.26756 0.84947 0.65268 0.21489 Normal Normal 

5 0.26224 0.87669 0.65749 0.21296 Normal Normal 

6 0.25785 0.89976 0.645 0.21483 Normal Normal 

7 0.25443 0.91818 0.64852 0.21672 Normal Normal 
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8 0.25197 0.91585 0.65744 0.21386 Normal Normal 

9 0.25049 0.89853 0.64678 0.21941 Normal Normal 

10 0.25 0.87753 0.6448 0.21491 Normal Normal 

11 0.64695 0.87281 0.64481 0.21547 Fault Fault 

12 0.63396 0.90216 0.64942 0.21231 Fault Fault 

13 0.62044 0.9169 0.65421 0.21531 Fault Fault 

14 0.60644 0.91458 0.64431 0.21439 Fault Fault 

15 0.59203 0.89967 0.64884 0.21456 Fault Fault 

16 0.57725 0.87523 0.65756 0.21447 Fault Fault 

17 0.56217 0.84831 0.64547 0.21547 Fault Fault 

18 0.54685 0.83345 0.64743 0.21646 Fault Fault 

19 0.379562 0.916329 0.656889 0.36014 Fault Fault 

20 0.393555 0.916834 0.646129 0.374978 Fault Normal 

On the basis of revised results from primary & secondary decision making systems, now the probabilities are 
assigned. 

IV.  RESULTS 
 
As mentioned earlier, by considering the historical data base of the plant and experts’ opinion, the a priori 
probability of occurrence of fault is about 20 % and reliability of primary decision making system/ sensor is 
95%.  
 
Thus, the following probabilities may be assigned at Primary Level Decision Making System: 
 

q(N) = 0.8 *0.95 = 0.76 
q(F) = 0.2*0.95 = 0.19 

 
Also the following probabilities may be assigned for the falsely assumed states of operation, taking into account 
the fact that 5% of misclassified cases arising due to unreliability of decision making system/ sensor are 
distributed evenly:  
 

q(N’) = 0.8 *0.05 = 0.04 
q(F’) = 0.2*0.05 = 0.01 

 
At Secondary Level Decision Making System for confirmation of Normal Condition, from the earlier results 
obtained, one case was wrongly classified as faulty out of data set of twenty with misclassification error as 5%. 
Hence, the probabilities of output at this stage may be assigned as: 
 

q(N N) = 0.722 
q(NF) = 0.038 

 
With fourteen abrupt fault cases possible out of spectrum of nineteen faults considered, the probability of 
normal being classified as abrupt fault condition and the probability of normal being classified as incipient fault 
condition can be calculated respectively as  :- 
 

q(NFA) = 0.038*14/19 = 0.028 
q(NFI) = 0.038*5/19 = 0.01 

 
Similarly, at Secondary Level Decision Making System for confirmation of Fault Condition, from the results 
obtained with misclassification error for abrupt fault as about 1% and for incipient faults about 15%; the 
following probabilities of output at this stage may be assigned :- 
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q(FA) = 0.14 
q(FI) = 0.05 
q(FAA) = 0.1386 
q(FAN) = 0.0007 
q(FAI) = 0.0007 
q(FII) = 0.0425 
q(FIN) = 0.00375 
q(FIA) = 0.00375 
q(N’A) = 0.0295 
q(N’AA) = 0.029 
q(N’AN) = 0.0015 
q(N’AI) = 0.0015 
q(N’I) = 0.0105 
q(N’II) = 0. 009 
q(N’IN) = 0.00075 
q(N’IA) = 0.00075 
q(F’N) = 0.0095 
q(F’F) = 0.0005 
q(F’FA) = 0.000495 
q(F’FI) = 0.000005 

 
This Probability assignment has been depicted in Figure 3. 
 

 
 

Figure 3: Assignment of A priori Probabilities for Alternative Policy 
 
   V. DISCUSSION  
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The proposed methodology provides scope for fine tuning of the decision making system for the continuous 
improvement of results, thereby making the decision making system Self Learning and Intelligent. The above 
analysis is utilized for improving the fault diagnosis results by consideration of possible alternatives in the 
Perception Based Decision Making System.  
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